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A novel Cu(II)-catalysed Sonogashira reaction
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In the presence of triphenylphosphine, a novel Cu(II)-catalysed Sonogashira reaction of aryl iodides and bromides with 
terminal alkynes has been developed, which generates the corresponding cross-coupling products in good yields.
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The palladium complex catalysed coupling of terminal alkynes 
with aryl and alkenyl halides in the presence of a catalytic 
amount of CuI and an amine (the Sonogashira reaction) is 
one of the most powerful and straightforward methods for 
the formation of carbon–carbon bonds in organic synthesis.1 
This method has been widely used for the synthesis of 
natural products,2 biologically active molecules,3 nonlinear 
optical materials and molecular electronics,4 dendrimeric 
and polymeric materials,5 macrocycles with acetylene links6 
and polyalkynylated molecules.7 In general, the traditional 
palladium-catalysed reaction conditions are mild and many 
reactions can be accomplished at ambient temperature. 
However, the Sonogashira reaction often generates homo-
coupling products of terminal alkynes8 along with the main 
reaction in considerable yields owing to the addition of CuI. 
These undesirable by-products are generally not easy to separate 
from the desired products due to very similar chromatographic 
mobility.9 Furthermore, the reaction often proceeds in the 
presence of a more expensive homogeneous palladium complex 
catalyst, which makes the recovery of the metal tedious if not 
impossible, and might result in high palladium contamination 
of the products. In addition, amines, such as triethylamine and 
piperidine, required in most Sonogashira reactions, have a bad 
smell and add to the environmental burden.

A number of modifications, such as copper-free catalyst 
systems,10 amine- and copper-free systems,11 ligand-free 
systems,12 palladium powder systems,13 nickel systems,14 
environmental-friendly reaction media (including 
aqueous,10n,15 solventless,13 and ionic liquid10m,16 systems), 
phase-transfer reaction conditions and hydrogen atmosphere 
conditions,17 transition-metal free catalyst systems,18 
ligand-, copper- and amine-free system19 and a CuI/N,N-
dimethylglycine catalyst system20 have been used to solve 
one or two of the above problems, but none of them solves all 
of the problems. Therefore, the development of simpler, more 
practical, economic and efficient catalyst systems is still an 
important objective in this area.

Here we report a novel Cu(II) catalysed Sonogashira 
reaction of aryl iodides and bromides with terminal alkynes. 
The reaction generates the corresponding cross-coupling 
products in good yields (Scheme 1).

Results and discussion
In our initial screening experiments, when we searched for a 
cross-coupling protocol for the reaction of 4-iodoanisole and 

phenylacetylene, we observed that 4-iodoanisole could react 
with phenylacetylene in the presence of 10 mol% of CuSO4 and 
2 equivalents of K2CO3 in DMF at 100°C for 6 h to afford the 
desired cross-coupling product in 42% yield. Encouraged by 
this result, we continued to improve the yield by using the most 
efficient copper source and base. We were delighted that the 
desired product was obtained in 93% yield by using CuCl2 as 
catalyst and LiOH as base (entry 1, Table 1). 91%, 88%, 70%, 
and 50% yields of the desired products were generated when the 
reactions were catalysed by CuI, CuCl, CuSO4 and Cu(OAc)2, 
respectively. However, no desired cross-coupling product was 
isolated when the reaction was carried out in the absence of any 
copper salt. In the next investigation, CuCl2 was chosen as an 
effective catalyst in the Sonogashira coupling reaction for its 
high efficiency, commercial availability and stability in air.

During the course of our examination of the effect of base 
on the Sonogashira coupling reaction, LiOH was found to 
be the most effective (entry 1, Table 2). Other bases such as 
K2CO3, Na3PO4, KF and Cs2CO3, were substantially less 
effective, and piperidine and triethylamine were no longer the 
effective bases in this catalyst system (entries 2–7, Table 2).

The solvent also plays an important role in this reaction. 
The reaction conducted in DMF was most effective (entry 1,  
Table 3) and the use of DMSO and H2O as solvents led to 
slower reactions (entries 5 and 7, Table 3). Poor yields of 
the cross-coupling products were observed while reactions 
were performed in dioxane and ethanol, respectively 
(entries 2 and 4, Table 3) and only trace amounts of desired 
products were isolated when the reactions were carried out in 
dichloromethane and acetonitrile (entries 3 and 6, Table 3).

To survey the generality of this Sonogashira-type reaction, 
we next investigated the reaction using a variety of aryl 
iodides and bromides, with a wide range of terminal alkynes 
as substrates under the standard reaction conditions. The 
results are shown in Table 4. Electron-neutral, electron-rich 
and electron-poor aryl iodides reacted with aromatic terminal 
alkynes very well to generate the corresponding cross-
coupling products in excellent yields (entries 1–5, Table 4).  
An aliphatic terminal alkyne was also reacted with iodobenzene 
to form the cross-coupling product in good yield (entry 5, 
Table 4). Regardless of their electronic characters, the aromatic 
terminal alkynes component coupled smoothly with aryl 
iodides to produce the desired products in excellent yields. 
Activated aryl bromides reacted with phenylacetylene and  
4-ethynyltoluene to generate the corresponding products in 
good to excellent yields (entries 6–10, Table 4). For an electron-
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Table 1 Effect of copper source on the Sonogashira reactiona

Entry Copper salt/amount Yields/%b

1 CuCl2 (10% mol) 93
2 CuCl (10% mol) 88
3 CuI (10% mol) 91
4 Cu(OAc)2 (10% mol) 50
5 CuSO4 (10% mol) 70
aPhenylacetylene (1.00 mmol), 4-iodoanisole (1.00 mmol), Cu salt (0.10 mmol), PPh3 (0.30 mmol), LiOH (2.00 mmol) in DMF (4 ml) 
at 100°C for 6 h. bIsolated yields.

+ IH MeO OMe
Cu salt -PPh3
LiOH, DMF

Table 2 Effect of base on the Sonogashira reactiona

Entry Base Yields/%b

1 LiOH 93
2 K2CO3 75
3 KF 60
4 Na3PO4 70
5 Cs2CO3 50
6 Et3N 17
7 Piperidine 12
aPhenylacetylene (1.00 mmol), 4-iodoanisole (1.00 mmol), CuCl2 (0.10 mmol), PPh3 (0.30 mmol), base (2.00 mmol) in DMF (4 ml) 
at 100°C for 6 h. bIsolated yields.

+ IH MeO OMe
CuCl2-PPh3
Base, DMF

Table 3 Effect of solvent on the Sonogashira reactiona

Entry Solvent/Temp./°C Yields/%b

1 DMF/100 93
2 Dioxane/75 10
3 CH2Cl2/40 trace
4 C2H5OH/80 12
5 H2O/100 83
6 CH3CN/80 trace
7 DMSO/100 87
aPhenylacetylene (1.00 mmol), 4-iodoanisole (1.00 mmol), CuCl2 (0.10 mmol), PPh3 (0.30 mmol), LiOH (2.00 mmol) in solvent  
(4 ml) at the temperature indicated in Table 3 for 6 h. bIsolated yields.

+ IH MeO OMe
CuCl2-PPh3
LiOH-Solvent

Table 4 Cu(II) Catalysed Sonogashira reactiona

Entry Organic halide Terminal alkyne Yields/% b

 1 p-CH3OC6H4I C6H5C∫CH 93
 2 C6H5I C6H5C∫CH 99
 3 p-O2NC6H4I C6H5C∫CH 91
 4 p-CH3COC6H4I p-CH3C6H4C∫CH 90
 5 C6H5I n-C8H17C∫CH 78
 6 2-Bromopyridine C6H5C∫CH 75
 7 p-CH3COC6H4Br C6H5C∫CH 92
 8 p-O2NC6H4Br C6H5C∫CH 89
 9 p-CH3COC6H4Br p-CH3C6H4C∫CH 87
 10 p-CNC6H4Br C6H5C∫CH 86
 11 p-CH3OC6H4Br C6H5C∫CH 33
aTerminal alkyne (1.00 mmol), organic halide (1.00 mmol), CuCl2 (0.10 mmol), PPh3 (0.30 mmol), LiOH (2.00 mmol) in DMF (4 ml) 
at 100°C for 6 h. bIsolated yields.
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rich aryl bromide, a relatively lower yield was obtained under 
the present reaction conditions (entry 11, Table 4).

Conclusion
In conclusion, we have developed a novel Cu(II)-catalysed 
Sonogashira reaction in the presence of PPh3. The method 
has the advantages of an efficient catalyst system, simple 
operation and high yields.

Experimental
Physical measurements and materials
Melting points were recorded on a WRS-2B melting point apparatus 
and are uncorrected. All 1H and 13C NMR spectra were recorded 
at 300 or 250 MHz, and 75 or 62.5 MHz respectively by a Bruker 
NMR spectrometer using CDCl3 as solvent. Chemical shifts are given 
as δ values with reference to tetramethylsilane (TMS) as internal 
standard. The reagents were received from a commercial supplier 
without purification prior to use. Products were purified by flash 
column chromatography.

General procedure for Sonogashira reaction
Under a nitrogen atmosphere, an oven-dried round-bottomed flask was 
charged with a terminal alkyne (1.0 mmol), aryl halide (1.00 mmol), 
LiOH (2.00 mmol), CuCl2 (0.10 mmol), PPh3 (0.30 mmol), and DMF 
(4 ml). The reaction mixture was placed in an oil bath at 100°C for 
6 h. After cooling to the room temperature, Et2O (25 ml) was added. 
The organic layer was successively washed with water (10 ml) and 
brine (10 ml) and dried over Na2SO4. The solution was filtered, 
concentrated, and the residue was purified by flash chromatography 
on silica gel to give the desired cross-coupling product.

(4-Methoxyphenyl)phenylacetylene: M.p. 59–60°C (lit.21 57–61°C);  
1H NMR (CDCl3, 300 MHz) δ: 7.53–7.46 (m, 4H), 7.37–7.30 (m, 
3H), 6.87 (dd, J = 8.7, 2.1 Hz, 2H), 3.82 (s, 3H); 13C NMR (CDCl3, 
75 MHz) δ: 159.5, 133.0, 131.4, 128.3, 127.9, 123.5, 115.3, 113.9, 
89.3, 88.0, 55.3.

Diphenylacetylene: M.p. 60–61°C (lit.22 60–62°C); 1H NMR 
(CDCl3, 250 MHz) δ: 7.54–7.50 (m, 4H), 7.32–7.28 (m, 6H); 13C NMR  
(CDCl3, 62.5 MHz) δ: 131.6, 128.3, 128.2, 123.3, 89.4.

1-Phenyl-1-decyne: Oil.23 1H NMR (CDCl3, 250 MHz) δ: 7.40–
7.36 (m, 2H), 7.28–7.22 (m, 3H), 2.38 (t, J = 7.0 Hz, 2H), 1.64–1.53 
(m, 2H), 1.45–1.28 (m, 10 H), 0.88 (t, J = 6.5 Hz, 3H); 13C NMR 
(CDCl3, 62.5 MHz) δ: 131.5, 128.1, 127.3, 124.2, 90.3, 80.6, 31.9, 
29.2, 29.1, 28.9, 28.8, 22.7, 19.4, 14.1.

(4-Nitrophenyl)phenylacetylene: M.p. 121–122°C (lit.24 120–
121°C); 1H NMR (CDCl3, 250 MHz) δ: 8.19 (m, J* = 8.8 Hz, 2H), 
7.64 (m, J* = 8.8 Hz, 2H), 7.56–7.52 (m, 2H), 7.39–7.37 (m, 3H); 
13C NMR (CDCl3, 62.5 MHz) δ: 146.9, 132.2, 131.8, 130.2, 129.2, 
128.5, 123.6, 122.0, 94.7, 87.5.

(4-Acetylphenyl)phenylacetylene: M.p. 95–96°C (lit.25 94–96°C); 
1H NMR (CDCl3, 250 MHz) δ: 7.91 (m, J* = 8.4 Hz, 2H), 7.58  
(m, J* = 8.4 Hz, 2H), 7.54–7.52 (m, 2H), 7.36–7.33 (m, 3H), 2.57 
(s, 3H); 13C NMR (CDCl3, 62.5 MHz) δ: 197.1, 136.1, 131.7, 131.6, 
128.7, 128.4, 128.2, 128.1, 122.6, 92.6, 88.6, 26.5.

2-(2-Phenylethynyl)pyridine: Oil.26 1H NMR (CDCl3, 300 MHz)  
δ: 8.60 (dd, J = 5.1 Hz, J = 0.9 Hz, 1H), 7.68–7.59 (m, 3H), 7.51 (dd,  
J = 8.1 Hz, J = 0.9 Hz, 1H), 7.37–7.33 (m, 3H), 7.23–7.19 (m, 1H); 
13C NMR (CDCl3, 75 MHz) δ: 149.9, 143.2, 136.0, 131.9, 128.8, 
128.2, 127.0, 122.6, 122.0, 89.1, 88.4.

(4-Cyanophenyl)phenylacetylene: M.p. 109–110°C (lit.27 108.5–
109.5°C); 1H NMR (CDCl3, 300 MHz) δ: 7.65–7.59 (m, 4H), 7.56–
7.53 (m, 2H), 7.40–7.37 (m, 3H); 13C NMR (CDCl3, 75 MHz) δ: 132.0 
(2C), 131.8, 129.1, 128.5, 128.2, 122.2, 118.5, 111.4, 93.7, 87.7.

(4-Acetylphenyl)-p-tolylacetylene: M.p. 124–126°C (lit.28 124–
126°C); 1H NMR (CDCl3, 300 MHz) δ: 7.99 (m, J* = 6.0 Hz, 2H), 
7.68 (m, J* = 6.0 Hz, 2H), 7.49 (m, J* = 6.0 Hz, 2H), 7.27 (m,  
J* = 6.0 Hz, 2H), 2.35 (s, 3H); 2.60 (s, 3H); 13C NMR (CDCl3, 75 
MHz) δ: 197.2, 139.1, 135.9, 131.7, 131.6, 129.1, 128.4, 128.1, 
119.5, 93.1, 88.1, 26.4, 21.5.

For the unresolved AA’XX’ 1H NMR systems above J* = J23 + J25
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